Перевод: со всех языков на английский

с английского на все языки

detailed investigations

  • 1 детальные исследования

    Универсальный русско-английский словарь > детальные исследования

  • 2 детализационный этап исследований

    Универсальный русско-английский словарь > детализационный этап исследований

  • 3 опровергать

    Русско-английский физический словарь > опровергать

  • 4 tetkikat

    ",-tı detailed investigations, careful examinations; scrutinies."

    Saja Türkçe - İngilizce Sözlük > tetkikat

  • 5 до настоящего времени

    The laser used to date has required...

    The gap between the two portions of Saturn's ring is called "Cassini's division" to this (or the present) day.

    The switch makes possible heretofore impractical applications of...

    Huge reserves of ore, hitherto virtually untouched, will become available.

    To date our highest emitter power has been... wt/cm2.

    Until the present time few investigations have been conducted of...

    Up to now, there has been no detailed work done to find...

    Русско-английский научно-технический словарь переводчика > до настоящего времени

  • 6 исследование

    investigation, research, study, analysis, discussion, tracing, examination, work, treatment
    Большая часть исследования была сконцентрирована на поиске... - Much research has been concentrated on the search for...
    В своем классическом исследовании Смит [1] установил, что... - In a classical investigation, Smith [1] established that...
    Важно, что исследование также показывает, что... - Importantly, the study also shows that...
    Вместо того, чтобы пытаться сделать общее исследование задачи, мы... - Rather than attempt a general investigation of the problem, we...
    Все эти исследования основываются на одном и том же предположении. - All these studies rest on the same assumption.
    Дальнейшее исследование, однако, показало, что... - Further investigation, however, has shown that...
    Данная идея получила свое начало при исследовании... - The idea originated with the study of...
    Для данного исследования мы возьмем... - For the present investigation we shall take...
    Для данного исследования необходимо... - For this treatment it is necessary to...
    До сих пор мы ограничивали наше исследование (чем-л). - So far we have confined our attention to...
    До сих пор наше исследование было посвящено ( чему-л). - Our treatment has so far been confined to...
    Долговременные исследования показали, что... - Long-term studies have shown that...
    Другие исследования также указали, что... - Other studies have also indicated that...
    Другое исследование показало, что... - Another study showed that...
    Закончим наше исследование объяснением (чего-л). - We conclude our treatment with an explanation of...
    Из этого исследования вытекает, что... - From this investigation it appears that...
    Исследование... имеет долгую и интересную историю. - The study of... has a long and interesting history.
    Исследование Смита [1] также свидетельствует о... - The research of Smith jlj also gives evidence of...
    Исследование каждого случая отдельно приводит к... - Examination of each individual case leads to...
    Исследование охватывает некоторые вопросы механики... - Investigation covers the fields of mechanics...
    Исследование уравнения (4) показывает, что... - An examination of (4) shows that...
    Исследование, продолжающееся два десятилетия, принесло удивительно немного результатов относительно... - Research spanning two decades has yielded surprisingly few results on...
    Исследования... выявили, что... - Studies of... have revealed that...
    Исследования показали важность... - The studies demonstrated the importance of...
    Кажется, было относительно немного исследований... - There seem to have been relatively few investigations of...
    Многочисленные исторические исследования показали, как... - Numerous historical analyses have shown how...
    Могло бы показаться естественным начать наше исследование с... - It might seem natural to start our investigation with...
    Мы использовали это в качестве отправного пункта нашего исследования. - We have taken this as a starting point for our investigation.
    Мы ограничим наше исследование (проблемой и т. п.)... - We shall confine the investigation to...
    Мы ограничим наше исследование (случаем и т. п.)... - We limit our study to...
    Мы сейчас проведем более систематическое исследование... - We shall now make a more systematic study of...
    Мы увидим, что данное исследование применимо также в случае... - It will be observed that this investigation applies also to the case of...
    В действительности его исследование, похоже, показывает, что... - Actually his investigation seemed to show that...
    Несколько исследований указывают, что... - Several studies indicate that...
    Объектом исследования является... - The investigation is concerned with...
    Однако имеются более ранние исследования, в которых... - However, there are more recent studies in which...
    Однако легко обобщить это исследование на случай, когда... - It is easy, however, to generalize this treatment to the case of...
    Однако наше исследование составляет лишь малую часть... - However, our study comprises only a small portion of...
    Однако тщательное исследование показывает, что... - Careful study shows, however, that...
    Описанные здесь исследования показывают, что... - The studies described here show that...
    Повсюду в этом исследовании будет сделан акцент... - Throughout this treatment an effort will be made to...
    Подробные исследования выявили, что... - Detailed studies have revealed that...
    Продвижение в исследовании было тесно связано с... - The progress of research has been intimately connected with...
    Чтобы предпринять подобное исследование, мы... - То undertake such a study we...
    Чтобы упростить исследование, мы теперь введем... - То simplify the treatment we shall now introduce...
    Эти задачи поддаются исследованию (с помощью)... - These problems are amenable to treatment by...
    Это гипотеза, заслуживающая дальнейшего исследования. - This is a hypothesis worthy of further investigation.
    Это исследование упрощается, если воспользоваться... - This study is facilitated by the use of...
    Это предлагает широкое поле для исследований. - This offers a wide field for research.

    Русско-английский словарь научного общения > исследование

  • 7 до настоящего времени

    The laser used to date has required...

    The gap between the two portions of Saturn's ring is called "Cassini's division" to this (or the present) day.

    The switch makes possible heretofore impractical applications of...

    Huge reserves of ore, hitherto virtually untouched, will become available.

    To date our highest emitter power has been... wt/cm2.

    Until the present time few investigations have been conducted of...

    Up to now, there has been no detailed work done to find...

    Русско-английский научно-технический словарь переводчика > до настоящего времени

  • 8 особенно удобен для

    Особенно удобен для-- The single stage turbine is particularly suitable for detailed flow investigations.

    Русско-английский научно-технический словарь переводчика > особенно удобен для

  • 9 уделять внимание

    Уделять внимание - to give consideration to, to give attention to, to give thought to, to give prominence, to place emphasis on, to place attention on, to focus on, to pay attention (for + gerund; to + noun); to receive attention, to receive emphasis
     This result indicates that further emphasis should be placed on investigations of cavitation damage in the incubation zone.
     The present discussion will be focused on the detailed events comprising the onset of dynamic stall. (В данной работе внимание будет уделено...)

    Русско-английский научно-технический словарь переводчика > уделять внимание

  • 10 Frost, James

    [br]
    b. late 18th century Finchley (?), London, England
    d. mid-19th century probably New York, USA
    [br]
    English contributor to investigations into the making of hydraulic cements in the early nineteenth century.
    [br]
    As early as 1807 Frost, who was originally a builder and bricklayer in Finchley in north London, was manufacturing Roman Cement, patented by James Parker in 1796, in the Harwich area and a similar cement further south, at Sheerness. In the early 1820s Frost visited Louis J.Vicat (1796–1861) in France. Vicat was a French engineer who began in 1812 a detailed investigation into the properties of various limestones found in France. He later published his conclusions, which were that the best hydraulic lime was that produced from limestone containing clay incorporating silica and alumina. He experimented with adding different clays in varying proportions to slaked lime and calcined the mixture. Benefiting from Vicat's research, Frost obtained a patent in 1822 for what he called British Cement. This patent specified an artificial cement made from limestone and silica, and he calcined chalk with the clay to produce a quick-setting product. This was made at Swanscombe near Northfleet on the south bank of the River Thames. In 1833 the Swanscombe manufactory was purchased by Francis \& White for £3,500 and Frost emigrated to America, setting up practice as a civil engineer in New York. The cement was utilized by Sir Marc Brunel in 1835 in his construction of the Thames Tunnel, and at the same time it was used in building the first all-concrete house at Swanscombe for Mr White.
    [br]
    Further Reading
    A.J.Francis, 1977, The Cement Industry 1796–1914: A History, David \& Charles. C.C.Stanley, 1979, Highlights in the History of Concrete, Cement and Concrete Association.
    DY

    Biographical history of technology > Frost, James

  • 11 Herbert, Edward Geisler

    [br]
    b. 23 March 1869 Dedham, near Colchester, Essex, England
    d. 9 February 1938 West Didsbury, Manchester, England
    [br]
    English engineer, inventor of the Rapidor saw and the Pendulum Hardness Tester, and pioneer of cutting tool research.
    [br]
    Edward Geisler Herbert was educated at Nottingham High School in 1876–87, and at University College, London, in 1887–90, graduating with a BSc in Physics in 1889 and remaining for a further year to take an engineering course. He began his career as a premium apprentice at the Nottingham works of Messrs James Hill \& Co, manufacturers of lace machinery. In 1892 he became a partner with Charles Richardson in the firm of Richardson \& Herbert, electrical engineers in Manchester, and when this partnership was dissolved in 1895 he carried on the business in his own name and began to produce machine tools. He remained as Managing Director of this firm, reconstituted in 1902 as a limited liability company styled Edward G.Herbert Ltd, until his retirement in 1928. He was joined by Charles Fletcher (1868–1930), who as joint Managing Director contributed greatly to the commercial success of the firm, which specialized in the manufacture of small machine tools and testing machinery.
    Around 1900 Herbert had discovered that hacksaw machines cut very much quicker when only a few teeth are in operation, and in 1902 he patented a machine which utilized this concept by automatically changing the angle of incidence of the blade as cutting proceeded. These saws were commercially successful, but by 1912, when his original patents were approaching expiry, Herbert and Fletcher began to develop improved methods of applying the rapid-saw concept. From this work the well-known Rapidor and Manchester saws emerged soon after the First World War. A file-testing machine invented by Herbert before the war made an autographic record of the life and performance of the file and brought him into close contact with the file and tool steel manufacturers of Sheffield. A tool-steel testing machine, working like a lathe, was introduced when high-speed steel had just come into general use, and Herbert became a prominent member of the Cutting Tools Research Committee of the Institution of Mechanical Engineers in 1919, carrying out many investigations for that body and compiling four of its Reports published between 1927 and 1933. He was the first to conceive the idea of the "tool-work" thermocouple which allowed cutting tool temperatures to be accurately measured. For this advance he was awarded the Thomas Hawksley Gold Medal of the Institution in 1926.
    His best-known invention was the Pendulum Hardness Tester, introduced in 1923. This used a spherical indentor, which was rolled over, rather than being pushed into, the surface being examined, by a small, heavy, inverted pendulum. The period of oscillation of this pendulum provided a sensitive measurement of the specimen's hardness. Following this work Herbert introduced his "Cloudburst" surface hardening process, in which hardened steel engineering components were bombarded by steel balls moving at random in all directions at very high velocities like gaseous molecules. This treatment superhardened the surface of the components, improved their resistance to abrasion, and revealed any surface defects. After bombardment the hardness of the superficially hardened layers increased slowly and spontaneously by a room-temperature ageing process. After his retirement in 1928 Herbert devoted himself to a detailed study of the influence of intense magnetic fields on the hardening of steels.
    Herbert was a member of several learned societies, including the Manchester Association of Engineers, the Institute of Metals, the American Society of Mechanical Engineers and the Institution of Mechanical Engineers. He retained a seat on the Board of his company from his retirement until the end of his life.
    [br]
    Principal Honours and Distinctions
    Manchester Association of Engineers Butterworth Gold Medal 1923. Institution of Mechanical Engineers Thomas Hawksley Gold Medal 1926.
    Bibliography
    E.G.Herbert obtained several British and American patents and was the author of many papers, which are listed in T.M.Herbert (ed.), 1939, "The inventions of Edward Geisler Herbert: an autobiographical note", Proceedings of the Institution of Mechanical Engineers 141: 59–67.
    ASD / RTS

    Biographical history of technology > Herbert, Edward Geisler

  • 12 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

См. также в других словарях:

  • Investigations and prosecutions relating to the Mountain Meadows massacre — The pursuit of the perpetrators of the Mountain Meadows massacre, which atrocity occurred September 11, 1857, had to await the conclusion of the American Civil War to begin in earnest.While taking into account evidence Brigham Young did not order …   Wikipedia

  • Model Crime Investigations — KMCI Seal representing KMCI Crimson red: Justice; White: Integrity …   Wikipedia

  • Picquart's Investigations of the Dreyfus Affair — While Alfred Dreyfus was serving his sentence on Devil s Island back in France a number of people began to question his guilt. The most notable of these was Major Georges Picquart.Colonel PicquartNot long after the condemnation of Alfred Dreyfus …   Wikipedia

  • market investigations — The Enterprise Act 2002 replaced the monopoly provisions of the Fair Trading Act 1973 with new powers in relation to market investigations . These allow the Office of Fair Trading to conduct investigations into the workings of a market and for it …   Law dictionary

  • Earth Sciences — ▪ 2009 Introduction Geology and Geochemistry       The theme of the 33rd International Geological Congress, which was held in Norway in August 2008, was “Earth System Science: Foundation for Sustainable Development.” It was attended by nearly… …   Universalium

  • Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics       Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity.       Computer scientist Manindra Agrawal of the… …   Universalium

  • biology — /buy ol euh jee/, n. 1. the science of life or living matter in all its forms and phenomena, esp. with reference to origin, growth, reproduction, structure, and behavior. 2. the living organisms of a region: the biology of Pennsylvania. 3. the… …   Universalium

  • Majestic 12 — This article is about the purported secret committee called Majestic 12 . For other uses, see Majestic 12 (disambiguation). The 1947 letter, purported to be signed by Harry Truman, authorizing Operation Majestic Twelve . Majestic 12 (also known… …   Wikipedia

  • Charles Darwin — Charles Darwin …   Wikipedia

  • drawing — /draw ing/, n. 1. the act of a person or thing that draws. 2. a graphic representation by lines of an object or idea, as with a pencil; a delineation of form without reference to color. 3. a sketch, plan, or design, esp. one made with pen, pencil …   Universalium

  • thermoreception — Sensory capacity (see sense) to detect the temperature of the environment and the body. It helps keep body temperature stable by regulating autonomic responses to temperature changes (see homeostasis). Temperature sensations are generated by… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»